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Motivation

I Derivative of lattice Dirac operator
I Fermionic force in HMC
I Conserved Currents

I Overlap Dirac operator:

Dov =
1
a
(1+ γ5sgn[γ5 DW])

I Numerically challenging
I Polynomial/partial fraction approximation
I Krylov subspace methods (finite µ)



Motivation

I Study anomalous transport in dense QCD
I Overlap Dirac operator at finite chemical potentiala

γ5 Dov(µ)γ5 = Dov(−µ)

I Conserved currents↔ derivatives over (background) gauge
fields:

jVµ (x) = ψ̄
∂ Dov

∂θµ(x)
ψ ... θµ background g.f.

I Compute approximation to sign function and its derivative for
large matrices

aJ. Bloch and T. Wettig, Phys.Rev.Lett.97:012003,2006



Matrix Sign Function

I Sign function for complex numbers: sgn(z) = z√
z2 = sgn(ℜ(z))

I Matrix sign function:
I Spectral form: (λi eigenvalues of A)

sgn(A)=Usgn(Λ)U−1, sgn(Λ) := diag(sgn(λ1), . . . ,sgn(λn))

I Roberts iteration:

Xk+1 :=
1
2
(
Xk +X−1

k

)
, X0 = A

(Newton’s method for X2−1 = 0)

I Both methods numerically very expensive!



Two-sided Lanczos algorithm

I Compute approximation to~y = f (A)~x, A ∈ Cn×n

I Krylov subspace method:
Kk(A,~x) := span(~x,A~x,A2~x, . . . ,Ak−1~x)

I Approximate f (A) by a polynomial of degree k−1
I Information about~x taken into account
I Construct (biorthonormal) matrices Vk and Wk ∈ Cn×k such

that
A = VkTkW

†
k , Tk ∈ Ck×k tridiagonal

I Compute
~y≈Vk f (Tk)W

†
k~x



function LANCZOS(A,~x,k, f )
~v1←~x/‖~x‖
~w1←~x/‖~x‖
for i← 1 to k−1 do

Tii← ~w†
i A~vi

~vi+1← (A−Tii)~vi
~wi+1← (A†−T∗ii)~wi

if i > 1 then
~vi+1←~vi+1−T(i−1)i~vi−1
~wi+1← ~wi+1−T∗i(i−1)~wi−1

end if
T(i+1)i←‖~vi+1‖
Ti(i+1)← ~w†

i+1~vi+1

Ti(i+1)←Ti(i+1)/T(i+1)i
~vi+1←~vi+1/T(i+1)i
~wi+1← ~wi+1/T

∗
i(i+1)

end for
Tkk ← ~w†

kA~vk

return ‖~x‖V f (T)ê1
end function

I A only in matrix-vector
multiplication

I Approximation depends on~x

I Compute f only for
T ∈ Ck×k

I Since ~w1 =~x/‖~x‖:

W†~x = ê1

I Operations:
O(nk)+O(k3)
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I Large errors even for small matrix sizes
I Lanczos AD numerically unstable
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A hint from A. Frommer:

Theorem (R. Mathiasb)
Let A(t) ∈ Cn×n be differentiable at t = 0 and assume that the
spectrum of A(t) is containded in an open subset D ⊂ C for all t in
some neighbourhood of 0. Let f be 2n−1 times continuously
differentiable on D. We then have:

f
([

A(0) Ȧ(0)
0 A(0)

])
≡
[

f (A(0)) d
dt

∣∣
t=0 f (A(t))

0 f (A(0))

]

bR. Mathias, SIAM J. Matrix Anal. Appl., 17(3):610-620,1996



A hint from A. Frommer:

Theorem (R. Mathiasb)
Let A(t) ∈ Cn×n be differentiable at t = 0 and assume that the
spectrum of A(t) is containded in an open subset D ⊂ C for all t in
some neighbourhood of 0. Let f be 2n−1 times continuously
differentiable on D. We then have:

f
([

A(0) Ȧ(0)
0 A(0)

])
≡
[

f (A(0)) d
dt

∣∣
t=0 f (A(t))

0 f (A(0))

]

We can compute the derivative of f (A) without knowing f ′(A)!

bR. Mathias, SIAM J. Matrix Anal. Appl., 17(3):610-620,1996



For polynomials

Let pn(Ā) = Ān

n = 2:

p2(Ā) =

[
A Ȧ
0 A

]2

=

[
A2 AȦ+ ȦA
0 A2

]
=

[
p2(A) ṗ2(A)

0 p2(A)

]
n→ n+1:

pn+1(Ā) =

[
pn(A) ṗn(A)

0 pn(A)

][
A Ȧ
0 A

]
=

[
pn+1(A) ṗn+1(A)

0 pn+1(A)

]



General proof

Let ε 6= 0 and U =

[
1 ε−1

1

0 1

]
.

Since f (XAX−1) = X f (A)X−1 we get:

f
([

A(0) A(ε)−A(0)
ε

0 A(ε)

])
= U f

(
U−1

[
A(0) A(ε)−A(0)

ε

0 A(ε)

]
U

)
U−1

= U f
([

A(0) 0
0 A(ε)

])
U−1

= U

[
f (A(0)) 0

0 f (A(ε))

]
U−1

=

[
f (A(0)) f (A(ε))− f (A(0))

ε

0 f (A(ε))

]
Take limε→0 on both sides.



I Useful for numerical calculations?

I Advantage:
I Compute derivative with Lanczos algorithm:

sign
([

A Ȧ
0 A

])(
0
~x

)
=

( d
dt sign(A)~x
sign(A)~x

)
I Disadvantage:

I Size of linear space doubles

I Convergence of Lanczos→ spectrum of Ā :=
[

A Ȧ
0 A

]
?
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Properties of Ā

I detĀ = (detA)2

I λ eigenvalue of Ā⇔ λ eigenvalue of A

I ~x :=
(

~x1
~x2

)
eigenvector of Ā to eigenvalue λ , then:

~x2 ≡ 0 and~x1 eigenvector of A to eigenvalue λ

or

~x2 eigenvector of A to eigenvalue λ and~x1 =
∂

∂ t~x2
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Derivative of the Overlap operator

I Lattice size 6x63

I SU(3) configurationsc with improved action
I β = 5.95, ρ = 1.4

I No deflation (yet)
I Nested Lanczos algorithm d→ inner Krylov size l fixed
I Results for

sgn(γ5DW ) and
∂

∂θµ(x)
sgn(γ5DW )

cProvided by Oleg Kochetkov
dJ. Bloch and S. Heybrock, Comput.Phys.Commun.182:878-889,2011
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Summary and Outlook

I Summary
I A method to compute derivatives of the Overlap operator
I Test on small lattices
I First results are very promising

I Outlook
I Implement deflation
I Generalization to higher derivatives
I Application to physical problems


